2024
|
Ná die voltooiing van hierdie module sal studente
- geïntegreerde kennis en deeglike begrip toon van die volgende: sleutelterminologie, konsepte, feite, beginsels, reëls, aksiomas, stellings en teorieë oor twee- en driedimensionele vektore, lineêre en nielineêre vergelykings, iteratiewe numeriese metodes en lineêre programmering; en insig toon in die wyse waarop hierdie kennis met ander vakdissiplines, bv. Tegnologie en ander natuurwetenskaplike terreine, verband hou;
- begrip toon van die verskillende teorieë en wette rakende multidimensionele Wiskunde en die vermoë toon om dit krities te evalueer ten opsigte van toepasbaarheid met betrekking tot vektore, matrikse, stelsels van vergelykings en iteratiewe numeriese metodes;
- die vermoë toon om verskillende toepaslike prosedures, reëls, beginsels, formules en metodes, met inbegrip van tegnologiese hulpmiddels en rekenaarsagteware, te kies, te evalueer en toe te pas tydens die oplossing van komplekse probleme, wat met vektore, matrikse, stelsels van vergelykings, iteratiewe numeriese metodes en lineêre programmering verband hou;
- die vermoë toon om indiwidueel, of as deel van ‘n groep, komplekse probleme, wat met vektore, matrikse, stelsels van vergelykings, lineêre programmering en iteratiewe numeriese metodes verband hou, te identifiseer, te analiseer, te evalueer, krities daaroor te reflekteer en aan te spreek deur gebruik te maak van teoriegedrewe argumente, wat gegrond is op die verwantskappe tussen die konsepte, feite, beginsels, reëls, aksiomas, stellings en teorieë;
- die vermoë toon om prosedures, berekeninge, resultate en voorgestelde oplossings van lewenswerklike probleme en eie menings te kommunikeer in goed geformuleerde argumente, met inagneming van algebraïese en meetkundige voorstelling van vergelykings, stelsels van vergelykings en lineêre programmering; en
- oor die ingesteldheid en vermoë beskik om algehele verantwoordelikheid te aanvaar vir eie leerbehoeftes, vordering van eie leer, besluitneming en implementering van toepaslike leerstrategieë en hulpbronne om die uitkomstes van hierdie module te bereik.
|
After completing this module, students should be able to
- show integrated knowledge and an understanding of the following: key terminology, concepts, facts, principles, rules, axioms, theorems and theories on two- and three-dimensional vectors, linear and non-linear equations, iterative numerical methods, and linear programming; and show insight in terms of how this knowledge relates to other subject disciplines, e.g. Technology and other areas of natural sciences;
- show an understanding of the different theories and laws regarding multidimensional mathematics and show the ability to critically evaluate them regarding applicability concerning vectors, matrices, systems of equations, and iterative numerical methods;
- show the ability to choose, evaluate and apply different applicable procedures, rules, principles, formulas, and methods, including technological aids and computer software in the solution of complex problems relating to vectors, matrices, systems of equations, iterative numerical methods, and linear programming;
- show the ability to identify, analyse, evaluate, critically reflect on and address complex problems relating to vectors, matrices, systems of equations, linear programming, and iterative numerical methods by making use of theory-driven arguments that are based on relationships between the concepts, facts, principles, rules, axioms, theorems and theories individually or as part of a group;
- show the ability to communicate procedures, calculations, results and proposed solutions of real-life problems and own opinions in well-formulated arguments, taking into account the algebraic and geometric representation of equations, systems of equations, and linear programming; and
- have the mindset and ability to take sole responsibility for own learning needs, the progress of own learning, decision-making, and the implementation of relevant learning strategies and resources to achieve the outcomes of this module.
|