2024
|
Ná die voltooiing van hierdie module sal studente
- die volgende konsepte van elementêre wiskunde kan begryp en toepas deur gebruik te maak van Polya se probleemoplossingsmodel: eweredigheid; datahantering; eksponentwette; oppervlak en omtrek van gekombineerde tweedimensionele vorms; totale buiteoppervlak en volume van gekombineerde vaste liggame; verhoudings (die skryf van verhoudings sowel as die oplos van komplekse verhoudings) en persentasie (hoe om 'n persentasie uit te werk en omgekeerd); asook getalpatrone en rekenkundige reekse (bepaling van die algemene term en die oplos van opeenvolgende vrae);
- oplossings kan formuleer vir elementêre wiskundige probleme deur van Polya se probleemoplossingsmodel gebruik te maak;
- met begrip kan demonstreer dat agtergrondskennis van elementêre wiskunde en denkprosesse aangewend kan word om die student se grondslagbevoegdheid tot aksie te help lei;
- die vermoë kan demonstreer om grondslagbevoegdheid en praktiese bevoegdheid te integreer, wat behels om elementêre wiskundige kennis en begrip met handelinge te koppel, handelinge aan te pas en die redes vir die aanpassing te verduidelik; en
- elementêre wiskunde in Gods-, mens- en omgewingsbeskouing kan interpreteer en deurgaans oor die reformatoriese beskouing ten opsigte van wiskunde kan reflekteer.
|
After completing this module, students will be able to
- understand and apply the following concepts of elementary mathematics by using Polya’s problem-solving model: proportionality; data handling; laws of indices; area and circumference of combined two-dimensional forms, total surface area and volume of combined fixed bodies; ratios (the writing of ratios as well as the solving of complex ratios), and percentage (how to calculate a percentage and vice versa); as well as number patterns and arithmetic progression (determined from the general term and the solution of consecutive questions);
- formulate solutions for elementary mathematical problems by using Polya’s problem-solving model;
- demonstrate an understanding that background knowledge of elementary mathematics and thought processes can be applied to help guide the student’s basic competency to action;
- demonstrate the ability to integrate basic competence and practical competence, which entail linking elementary mathematical knowledge and understanding with actions, adopting actions, and explaining the reasons for the adaptation; and
- interpret elementary mathematics in viewing God, man, and the environment and reflect throughout on the reformational view in terms of mathematics.
|